Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 1044143, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36345304

RESUMO

Holins and spanins are bacteriophage-encoded membrane proteins that control bacterial cell lysis in the final stage of the bacteriophage reproductive cycle. Due to their efficient mechanisms for lethal membrane disruption, these proteins are gaining interest in many fields, including the medical, food, biotechnological, and pharmaceutical fields. However, investigating these lethal proteins is challenging due to their toxicity in bacterial expression systems and the resultant low protein yields have hindered their analysis compared to other cell lytic proteins. Therefore, the structural and dynamic properties of holins and spanins in their native environment are not well-understood. In this article we describe recent advances in the classification, purification, and analysis of holin and spanin proteins, which are beginning to overcome the technical barriers to understanding these lethal membrane disrupting proteins, and through this, unlock many potential biotechnological applications.

2.
Biochem J ; 479(2): 207-223, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34935873

RESUMO

Bacteriophage endolysins degrade peptidoglycan and have been identified as antibacterial candidates to combat antimicrobial resistance. Considering the catalytic and structural diversity of endolysins, there is a paucity of structural data to inform how these enzymes work at the molecular level - key data that is needed to realize the potential of endolysin-based antibacterial agents. Here, we determine the atomic structure and define the enzymatic function of Escherichia coli O157:H7 phage FTEBc1 endolysin, LysT84. Bioinformatic analysis reveals that LysT84 is a modular endolysin, which is unusual for Gram-negative endolysins, comprising a peptidoglycan binding domain and an enzymatic domain. The crystal structure of LysT84 (2.99 Å) revealed a mostly α-helical protein with two domains connected by a linker region but packed together. LysT84 was determined to be a monomer in solution using analytical ultracentrifugation. Small-angle X-ray scattering data revealed that LysT84 is a flexible protein but does not have the expected bimodal P(r) function of a multidomain protein, suggesting that the domains of LysT84 pack closely creating a globular protein as seen in the crystal structure. Structural analysis reveals two key glutamate residues positioned on either side of the active site cavity; mutagenesis demonstrating these residues are critical for peptidoglycan degradation. Molecular dynamic simulations suggest that the enzymatically active domain is dynamic, allowing the appropriate positioning of these catalytic residues for hydrolysis of the ß(1-4) bond. Overall, our study defines the structural basis for peptidoglycan degradation by LysT84 which supports rational engineering of related endolysins into effective antibacterial agents.


Assuntos
Antibacterianos/química , Bacteriófagos/enzimologia , Endopeptidases/química , Escherichia coli O157/virologia , Proteínas Virais/química , Antibacterianos/metabolismo , Biocatálise , Domínio Catalítico , Parede Celular/metabolismo , Biologia Computacional/métodos , Cristalização , Endopeptidases/metabolismo , Ácido Glutâmico/química , Hidrólise , Simulação de Dinâmica Molecular , Peptidoglicano/metabolismo , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Proteínas Virais/metabolismo
3.
Viruses ; 13(6)2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207694

RESUMO

Bacteriophage-encoded endolysins have been identified as antibacterial candidates. However, the development of endolysins as mainstream antibacterial agents first requires a comprehensive biochemical understanding. This study defines the atomic structure and enzymatic function of Escherichia coli O157:H7 phage FAHEc1 endolysin, LysF1. Bioinformatic analysis suggests this endolysin belongs to the T4 Lysozyme (T4L)-like family of proteins and contains a highly conserved catalytic triad. We then solved the structure of LysF1 with x-ray crystallography to 1.71 Å. LysF1 was confirmed to exist as a monomer in solution by sedimentation velocity experiments. The protein architecture of LysF1 is conserved between T4L and related endolysins. Comparative analysis with related endolysins shows that the spatial orientation of the catalytic triad is conserved, suggesting the catalytic mechanism of peptidoglycan degradation is the same as that of T4L. Differences in the sequence illustrate the role coevolution may have in the evolution of this fold. We also demonstrate that by mutating a single residue within the hydrophobic core, the thermal stability of LysF1 can be increased by 9.4 °C without compromising enzymatic activity. Overall, the characterization of LysF1 provides further insight into the T4L-like class of endolysins. Our study will help advance the development of related endolysins as antibacterial agents, as rational engineering will rely on understanding mutable positions within this protein fold.


Assuntos
Bacteriófagos/enzimologia , Endopeptidases/metabolismo , Escherichia coli O157/genética , Escherichia coli O157/virologia , Engenharia de Proteínas/métodos , Temperatura , Proteínas Virais/metabolismo , Cristalografia por Raios X , Endopeptidases/genética , Estabilidade Enzimática , Modelos Moleculares , Proteínas Virais/genética
4.
Biochim Biophys Acta Proteins Proteom ; 1868(1): 140302, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678195

RESUMO

Bacteriophage endolysins have the potential to be a long-term antibacterial replacement for antibiotics. The exogenous application of endolysins on some bacteria results in rapid cell lysis. The prospects for endolysins are furthered by the ability to engineer them; novel endolysins can be developed with optimised stability, specificity, and lytic function. But the success of endolysin engineering and application requires a comprehensive understanding of the relationship between the enzymes biochemical, biophysical and bacteriolytic properties. Here, we examine their catalytic mechanisms, opportunities for developing novel endolysins, and highlight areas where a better understanding would support their long-term success as antibacterial agents.


Assuntos
Antibacterianos/química , Bacteriófagos/enzimologia , Hidrolases/química , Catálise , Engenharia de Proteínas
5.
Antibiotics (Basel) ; 7(1)2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29495476

RESUMO

There is growing concern about the emergence of bacterial strains showing resistance to all classes of antibiotics commonly used in human medicine. Despite the broad range of available antibiotics, bacterial resistance has been identified for every antimicrobial drug developed to date. Alarmingly, there is also an increasing prevalence of multidrug-resistant bacterial strains, rendering some patients effectively untreatable. Therefore, there is an urgent need to develop alternatives to conventional antibiotics for use in the treatment of both humans and food-producing animals. Bacteriophage-encoded lytic enzymes (endolysins), which degrade the cell wall of the bacterial host to release progeny virions, are potential alternatives to antibiotics. Preliminary studies show that endolysins can disrupt the cell wall when applied exogenously, though this has so far proven more effective in Gram-positive bacteria compared with Gram-negative bacteria. Their potential for development is furthered by the prospect of bioengineering, and aided by the modular domain structure of many endolysins, which separates the binding and catalytic activities into distinct subunits. These subunits can be rearranged to create novel, chimeric enzymes with optimized functionality. Furthermore, there is evidence that the development of resistance to these enzymes may be more difficult compared with conventional antibiotics due to their targeting of highly conserved bonds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...